124 research outputs found

    Signal transduction mechanisms in Caulobacter crescentus development and cell cycle control

    Get PDF
    The life cycle of the aquatic bacterium Caulobacter crescentus includes an asymmetric cell division and an obligate cell differentiation. Each cell division gives rise to a motile but replication inert swarmer cell and a sessile, replication competent stalked cell. While the stalked progeny immediately reinitiates DNA replication and cell division, the swarmer cell remains motile and chemotactically active for a constant period of the cell cycle before it differentiates into a stalked cell. During this process, the cell looses motility by ejecting the flagellum, synthesizes a stalk and eventually initiates chromosome replication and cell division. The link of morphogenic transitions to the replicative cycle of Caulobacter implies that the developmental programs which determine asymmetry and cell differentiation must be tightly connected with cell cycle control. This has been confirmed by the recent identification of signal transduction mechanisms, which are involved in temporal and spatial control of both development and cell cycle. Interestingly, the cell has recruited two-component signal transduction systems for this internal control, a family of regulatory proteins which usually are involved in the information transfer between the environment and the inside of a cell. The response regulator protein CtrA controls several key cell cycle events like the initiation of DNA replication, DNA methylation, cell division, and flagellar biogenesis. The activity of this master regulator is subject to complex temporal and spatial control during the C. crescentus cell cycle, including regulated transcription, phosphorylation and degradation. Three membrane bound sensor kinases have been proposed to control the phosphorylation status of CtrA. Two of these, CckA and DivJ, exhibit specific subcellular localization and, in the case of CckA, dynamic rearrangement in the course of the cell cycle. These findings support the idea that the developmental program of C. crescentus is controlled at least in part by localized cues that act as checkpoints for the control of morphological changes and cell cycle progressio

    A practical, unitary simulator for non-Markovian complex processes

    Full text link
    Stochastic processes are as ubiquitous throughout the quantitative sciences as they are notorious for being difficult to simulate and predict. In this letter we propose a unitary quantum simulator for discrete-time stochastic processes which requires less internal memory than any classical analogue throughout the simulation. The simulator's internal memory requirements equal those of the best previous quantum models. However, in contrast to previous models it only requires a (small) finite-dimensional Hilbert space. Moreover, since the simulator operates unitarily throughout, it avoids any unnecessary information loss. We provide a stepwise construction for simulators for a large class of stochastic processes hence directly opening the possibility for experimental implementations with current platforms for quantum computation. The results are illustrated for an example process.Comment: 12 pages, 5 figure

    Cyclic di-GMP: second messenger extraordinaire

    Get PDF
    Cyclic dinucleotides (CDNs) are highly versatile signalling molecules that control various important biological processes in bacteria. The best-studied example is cyclic di-GMP (c-di-GMP). Known since the late 1980s, it is now recognized as a near-ubiquitous second messenger that coordinates diverse aspects of bacterial growth and behaviour, including motility, virulence, biofilm formation and cell cycle progression. In this Review, we discuss important new insights that have been gained into the molecular principles of c-di-GMP synthesis and degradation, which are mediated by diguanylate cyclases and c-di-GMP-specific phosphodiesterases, respectively, and the cellular functions that are exerted by c-di-GMP-binding effectors and their diverse targets. Finally, we provide a short overview of the signalling versatility of other CDNs, including c-di-AMP and cGMP-AMP (cGAMP)

    Novel Divisome-Associated Protein Spatially Coupling the Z-Ring with the Chromosomal Replication Terminus in Caulobacter crescentus

    Get PDF
    Cell division requires proper spatial coordination with the chromosome, which undergoes dynamic changes during chromosome replication and segregation. FtsZ is a bacterial cytoskeletal protein that assembles into the Z-ring, providing a platform to build the cell division apparatus. In the model bacterium; Caulobacter crescentus; , the cellular localization of the Z-ring is controlled during the cell cycle in a chromosome replication-coupled manner. Although dynamic localization of the Z-ring at midcell is driven primarily by the replication origin-associated FtsZ inhibitor MipZ, the mechanism ensuring accurate positioning of the Z-ring remains unclear. In this study, we showed that the Z-ring colocalizes with the replication terminus region, located opposite the origin, throughout most of the; C. crescentus; cell cycle. Spatial organization of the two is mediated by ZapT, a previously uncharacterized protein that interacts with the terminus region and associates with ZapA and ZauP, both of which are part of the incipient division apparatus. While the Z-ring and the terminus region coincided with the presence of ZapT, colocalization of the two was perturbed in cells lacking; zapT; , which is accompanied by delayed midcellular positioning of the Z-ring. Moreover, cells overexpressing ZapT showed compromised positioning of the Z-ring and MipZ. These findings underscore the important role of ZapT in controlling cell division processes. We propose that ZapT acts as a molecular bridge that physically links the terminus region to the Z-ring, thereby ensuring accurate site selection for the Z-ring. Because ZapT is conserved in proteobacteria, these findings may define a general mechanism coordinating cell division with chromosome organization.; IMPORTANCE; Growing bacteria require careful tuning of cell division processes with dynamic organization of replicating chromosomes. In enteric bacteria, ZapA associates with the cytoskeletal Z-ring and establishes a physical linkage to the chromosomal replication terminus through its interaction with ZapB-MatP-DNA complexes. However, because ZapB and MatP are found only in enteric bacteria, it remains unclear how the Z-ring and the terminus are coordinated in the vast majority of bacteria. Here, we provide evidence that a novel conserved protein, termed ZapT, mediates colocalization of the Z-ring with the terminus in; Caulobacter crescentus; , a model organism that is phylogenetically distant from enteric bacteria. Given that ZapT facilitates cell division processes in; C. crescentus; , this study highlights the universal importance of the physical linkage between the Z-ring and the terminus in maintaining cell integrity

    The Use of Experimental Evolution to Study the Response of Pseudomonas aeruginosa to Single or Double Antibiotic Treatment

    Get PDF
    The widespread use of antibiotics promotes the evolution and dissemination of drug resistance and tolerance. Both mechanisms promote survival during antibiotic exposure and their role and development can be studied in vitro with different assays to document the gradual adaptation through the selective enrichment of resistant or tolerant mutant variants. Here, we describe the use of experimental evolution in combination with time-resolved genome analysis as a powerful tool to study the interaction of antibiotic tolerance and resistance in the human pathogen Pseudomonas aeruginosa . This method guides the identification of components involved in alleviating antibiotic stress and helps to unravel specific molecular pathways leading to drug tolerance or resistance. We discuss the influence of single or double drug treatment regimens and environmental aspects on the evolution of antibiotic resilience mechanisms

    Experimental evolution of aging in a bacterium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aging refers to a decline in reproduction and survival with increasing age. According to evolutionary theory, aging evolves because selection late in life is weak and mutations exist whose deleterious effects manifest only late in life. Whether the assumptions behind this theory are fulfilled in all organisms, and whether all organisms age, has not been clear. We tested the generality of this theory by experimental evolution with <it>Caulobacter crescentus</it>, a bacterium whose asymmetric division allows mother and daughter to be distinguished.</p> <p>Results</p> <p>We evolved three populations for 2000 generations in the laboratory under conditions where selection was strong early in life, but very weak later in life. All populations evolved faster growth rates, mostly by decreasing the age at first division. Evolutionary changes in aging were inconsistent. The predominant response was the unexpected evolution of slower aging, revealing the limits of theoretical predictions if mutations have unanticipated phenotypic effects. However, we also observed the spread of a mutation causing earlier aging of mothers whose negative effect was reset in the daughters.</p> <p>Conclusion</p> <p>Our results confirm that late-acting deleterious mutations do occur in bacteria and that they can invade populations when selection late in life is weak. They suggest that very few organisms – perhaps none- can avoid the accumulation of such mutations over evolutionary time, and thus that aging is probably a fundamental property of all cellular organisms.</p

    Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking

    Get PDF
    Histidine kinases are key components of regulatory networks in bacteria. Although many of these enzymes are bifunctional, mediating both phosphorylation and dephosphorylation of downstream targets, the molecular details of this central regulatory switch are unclear. We showed recently that the universal second messenger cyclic di-guanosine monophosphate (c-di-GMP) drives Caulobacter crescentus cell cycle progression by forcing the cell cycle kinase CckA from its default kinase into phosphatase mode. We use a combination of structure determination, modeling, and functional analysis to demonstrate that c-di-GMP reciprocally regulates the two antagonistic CckA activities through noncovalent cross-linking of the catalytic domain with the dimerization histidine phosphotransfer (DHp) domain. We demonstrate that both c-di-GMP and ADP (adenosine diphosphate) promote phosphatase activity and propose that c-di-GMP stabilizes the ADP-bound quaternary structure, which allows the receiver domain to access the dimeric DHp stem for dephosphorylation. In silico analyses predict that c-di-GMP control is widespread among bacterial histidine kinases, arguing that it can replace or modulate canonical transmembrane signaling

    Bacteria-on-a-bead: probing the hydrodynamic interplay of dynamic cell appendages during cell separation

    Get PDF
    Surface attachment of bacteria is the first step of biofilm formation and is often mediated and coordinated by the extracellular appendages, flagellum and pili. The model organism Caulobacter crescentus undergoes an asymmetric division cycle, giving rise to a motile "swarmer cell" and a sessile "stalked cell", which is attached to the surface. In the highly polarized predivisional cell, pili and flagellum, which are assembled at the pole opposite the stalk, are both activated before and during the process of cell separation. We explored the interplay of flagellum and active pili by growing predivisional cells on colloidal beads, creating a bacteria-on-a-bead system. Using this set-up, we were able to simultaneously visualize the bacterial motility and analyze the dynamics of the flagellum and pili during cell separation. The observed activities of flagellum and pili at the new cell pole of the predivisional cell result in a cooperating interplay of the appendages during approaching and attaching to a surface. Even in presence of a functioning flagellum, pili are capable of surface attachment and keeping the cell in position. Moreover, while flagellar rotation decreases the average attachment time of a single pilus, it increases the overall attachment rate of pili in a synergetic manner

    In situ structure of the Caulobacter crescentus flagellar motor and visualization of binding of a CheY-homolog

    Get PDF
    Bacterial flagellar motility is controlled by the binding of CheY proteins to the cytoplasmic switch complex of the flagellar motor, resulting in changes in swimming speed or direction. Despite its importance for motor function, structural information about the interaction between effector proteins and the motor are scarce. To address this gap in knowledge, we used electron cryotomography and subtomogram averaging to visualize such interactions inside Caulobacter crescentus cells. In C. crescentus, several CheY homologs regulate motor function for different aspects of the bacterial lifestyle. We used subtomogram averaging to image binding of the CheY family protein CleD to the cytoplasmic Cring switch complex, the control center of the flagellar motor. This unambiguously confirmed the orientation of the motor switch protein FliM and the binding of a member of the CheY protein family to the outside rim of the C ring. We also uncovered previously unknown structural elaborations of the alphaproteobacterial flagellar motor, including two novel periplasmic ring structures, and the stator ring harboring eleven stator units, adding to our growing catalog of bacterial flagellar diversity

    Second messenger-mediated tactile response by a bacterial rotary motor

    Get PDF
    When bacteria encounter surfaces, they respond with surface colonization and virulence induction. The mechanisms of bacterial mechanosensation and downstream signaling remain poorly understood. Here, we describe a tactile sensing cascade in Caulobacter crescentus in which the flagellar motor acts as sensor. Surface-induced motor interference stimulated the production of the second messenger cyclic diguanylate by the motor-associated diguanylate cyclase DgcB. This led to the allosteric activation of the glycosyltransferase HfsJ to promote rapid synthesis of a polysaccharide adhesin and surface anchoring. Although the membrane-embedded motor unit was essential for surface sensing, mutants that lack external flagellar structures were hypersensitive to mechanical stimuli. Thus, the bacterial flagellar motor acts as a tetherless sensor reminiscent of mechanosensitive channels
    • …
    corecore